
Abstract
It has been widely accepted that intelligent robots operating in dynamic environments should
be built using a combination of two very different approaches: reactive and deliberative archi-
tectures. The use of only one of these approaches leads to sub-optimal performance when non-
trivial tasks are to be performed by robots in dynamic environments. Typical hybrid architec-
tures consist of several layers with one reactive layer and several other layers with varying lev-
els of deliberativeness. This paper discusses existing hybrid architectures in terms of the flow
of control across various layers and their limitations. The paper also proposes a new architec-
ture, Layering Using Data Persistence (LUDaP) that uses the notion of data persistence to
guide the design of the layers in the architecture.

1. Introduction
The field of AI started out as an attempt to replicate human intelligence. A major chunk of the AI com-
munity worked on systems that could solve problems and learn. This interest was reasonable and justi-
fied since our ability to solve problems and learn is at the core of our intelligence. These early systems
worked by operating on elaborate representations of the world and can be characterized as deliberative
systems. The negative aspect of this trend was lack of attention given to other faculties of human
intelligence, which dealt with seemingly un-intelligent things like motion.

For robot builders, using deliberative systems in robot control systems became an obvious
choice due to the popularity and availability of these deliberative systems. However, robots that made
use of deliberative framework were excruciatingly slow. This can be directly attributed to the nature of
deliberative systems, which are intensive in terms of both memory and computation.

 In the nineties, [Brooks, 1996] proposed some radical new ideas that changed the way in

which autonomous robots were built. Brooks suggested that for a dynamically changing world, a close
coupling between percepts and actions was the key to building successful robots. According to him,
having a representation of the world and committing to it is a flawed approach [Brooks, 1991]. Archi-

Data Persistence: A Design Principle for Hybrid Robot Control
Architectures

Mithun Sheshagiri Marie desJardins

Maple Research Group,
ECS-002, UMBC,

 Baltimore, MD-21227, U.S.A.
Email: mits1@cs.umbc.edu

Maple Research Group,
ECS-002, UMBC,

 Baltimore, MD-21227, U.S.A
Email: mariedj@.cs.umbc.edu

tectures that do not make use of any representation of the world, relying instead on rapid percept-
action cycles to achieve their objectives, are termed reactive. This paradigm can be used to build very
successful but simplistic robots. Due to the absence of representation, purely reactive robots find com-
plicated tasks (tasks that need to be performed in a specific order or that require the system to maintain
an earlier state) difficult to achieve.

 Intuitively we can infer from the complementary advantages and disadvantages of reactive and

deliberative approaches that successful robots that can achieve complex tasks should be built using a
combination of both of these approaches. The paper proposes a hybrid architecture that uses persis-
tence of data in the system to characterize the layers that form the hybrid architecture.

1.1. Deliberative Systems
Deliberative systems have the following properties:
1. They have an explicit representation of the world and operate on this representation to achieve tasks.
• Advantage:

• Complex goals can be specified in terms of this representation.
• Learning can be incorporated.

• Drawback: There is no optimal way to represent the world. This is because of the "what-if" or
qualification problem; it is impossible to represent even a simple world completely by enumerat-
ing.

2. The system gets percepts from the world. It modifies its representation of the world using these per-
cepts and computes an appropriate action. This is called the percept-action cycle. One percept-action
cycle could last several seconds or minutes.
• Drawback: If the world in which the system operates changes rapidly, then long percept-action

cycles are of very little use. This is primarily because the action arrived at after the percept-action
cycle might be inappropriate due to changes in world after the percept-action cycle starts.

1.2. Reactive Systems
Reactive systems have the following properties:
1. Very limited or no representation of the world.
• Advantage: Reduces the amount of resources required for computation.
• Drawback:

• Difficult to specify complex goals.
• Difficult to incorporate learning modules.

2. The percept-action cycle is very short.
• Advantage: Domains in which the environment is constantly changing can be handled.

There are several implementations of hybrid architectures, Section 2 looks at a couple of them. In Sec-
tion 3, we discuss about our framework for building hybrid systems. Section 4 and Section 5 talk about
our implementation and experimental results.

2. Related Work
Hybrid architectures represent an attempt to incorporate the best of both worlds. They exploit the de-
liberative method’s inherent potential to achieve complicated tasks and to incorporate learning, while
providing the fast and responsive behavior of reactive methods. We next briefly describe two systems
that have integrated a deliberative planner and a reactive layer.

2.1. ATLANTIS
ATLANTIS [Gat,1992] was designed to control autonomous robots capable of performing multiple
tasks in a real-time, noisy and unpredictable environment. The various layers in the system operate
asynchronously and the computational structure of each of these layers is very different (heterogene-
ous). The system is made up of three layers: a controller, a sequencer and a planner. The controller is
responsible for all primitive activities and forms the reactive layer of the system. The sequencer se-
quences primitive operations and deliberative computations, providing an interface between the lower
reactive and upper deliberative layer. An important feature of ATLANTIS is that the upper layer
merely advises on what needs to be done. The decision whether to take up the advice is left to the se-
quencer.

2.2. AuRA
The architecture of the Autonomous Robot Architecture (AuRA) [Arkin et al., 1997] is more elaborate
than that of ATLANTIS, consisting of three layers: two deliberative layers and a reactive layer. The
bottom reactive layer is based on Schema theory as developed by Arbib [Arbib, 1992] and implemented
by Arkin [Arkin, 1995]. The main difference between ATLANTIS and AuRA• apart from the number
of layers• is the way in which the deliberative layers are put into action. In AuRA, the upper layers are
not activated unless a failure is detected. Lack of progress constitutes failure. The upper layers are ac-
tivated one layer at a time until the problem causing the failure is resolved. Unlike ATLANTIS, AuRA
incorporates several forms of learning techniques. Although learning primarily occurs in the delibera-
tive layer, it can be incorporated into the reactive layer.

Planner
Deliberative Layer

 Sequencer

Controller
Reactive Layer

Fig. 1: Architecture of ATLANTIS

Fig. 2: High Level AuRA Schematic (This figure has been directly reproduced from [Arkin,
1997])

Deliberative
Component

 Reactive
Component

3. Layering Using Data Persistence (LUDaP)
Although both ATLANTIS and AURA do a good job of defining interfaces between the deliberative
layer and the reactive layer, the methodology adopted for their design is very domain-specific. These
are very successful working systems but it is difficult to port their architecture to a new domain. More-
over it appears that the partitioning of layers is done based on the amount of time required for various
tasks. Computationally intensive tasks move upwards. Although this is a necessary condition, we be-
lieve that this is not sufficient to build efficient architectures. We propose a persistence-based ap-
proach to layer design in hybrid systems, where the functionality and reasoning of each layer is charac-
terized by the degree of persistence of the data that is processed by that layer. There are several issues
that need to be resolved when building persistence based hybrid architectures.

3.1. Data Persistence
Data which is not likely to change over some duration of time is termed persistent data. The degree of
persistence of a data item is directly proportional to the duration during which the data does not
change. Chunks of data that change continuously but gradually can also be thought of as persistent
data. In this case, the degree of persistence is proportional to the rate of change.

Layer n-1

Layer1

Reactive Layer
Layer0

 A0

 A1

 An

 An-1

Planner Layer n

Fig.3 Proposed LUDaP Architecture

 R
EPR

ESEN
TA

TIO
N

 O
F TH

E W
O

R
LD

We define the following classes of persistent data:
1. Data which is persistent by nature.
2. Data formed by abstraction.
3. Predictable data.
We now define these three classes of data, and illustrate them using a scenario in which robot is trying
to navigate through a room and has to visit a specific set of points as part of its goals. We assume in
this scenario that’s the robot is self-powered by a battery pack.

3.1.1. Persistence by Nature
In almost all domains, it is possible to determine parts of the representation of the world (data) that are
static or that change slowly over time. The rate at which each of these chunks of data change may vary.
Hence we say that the degree of persistence varies for these chunks of data. For example, in the room
navigation domain, the position of the robot position(x,y) is constantly changing and therefore has a
very low degree of persistence by nature. The fact that the robot has visited a particular point, vis-
ited(x,y), does not change once established; therefore, this fact has a very high degree of persistence by
nature. At the same time, the relations that characterize the points that have not been visited by the
robot, unvisited(x,y), have a lower degree of persistence as their status is likely to change in the future.
As is clear from the above example that isolating this class of persistent data requires intimate knowl-
edge of the domain. In this example, we may not know the precise degree of persistence of the relations
visited(x,y) and unvisited(x,y), but we can make the following qualitative statements based solely on
the semantics of the domain.

d.o.p[visited(x,y)] > d.o.p[unvisited(x,y)] > d.o.p[position(x,y)]
where d.o.p= degree of persistence

3.1.2. Data Formed by Abstraction
Designing any robot architecture involves data abstraction. Here we define data abstraction as the for-
mation of complex forms of data from simpler forms of data. When abstract data are formed, they ac-
quire certain properties: in particular, reasoning using abstract data may take less time than using the
raw data; on the other hand, forming and updating these abstract data structures incurs computational
overhead. These complex forms of data sometimes acquire a higher degree of persistence in cases
where they aggregate states or properties of the world. For example, in the robot navigation domain,
we could form a spatial abstraction that groups together individual locations and dividing the room
into a grid and characterize the position of the robot in terms of the blocks in the grid. In this case,
d.o.p[block(u,v)] > d.o.p[position(x,y)]
where (u,v) is the coordinate of the block in the grid.
The map of the room is an abstraction formed from the position (low degree of persistence) of the ro-
bot.

3.1.3. Predictable Data
Most domains also have data that are known to change in a predictable way. These forms of data are
persistent by virtue of the fact that we can reason about them using their predictable nature, with some
associated uncertainty. The weight of this uncertainty factor increases with the time since the data item
was last directly observed. Therefore, the degree of persistence of this form of data decreases over time
until its true value is reinforced by the percepts received by the robot. To illustrate this in the robot
navigation domain, we define power-on time as the time remaining till battery failure. The power-on
time of the robot can be estimated using the power drawn by the robot per unit time. We categorize the
power-on time as persistent, based on its predictable nature. The power-on time of the robot can be

t

 A A’
 persistent state

 length of computation

Figure 4 (a)

accurately estimated at any given time and used for deliberation without significant loss of accuracy. In
the case where operations performed by the robot consume different amounts of power, an uncertainty
value can be associated with the estimate. Note that associating an uncertainty value decreases the de-
gree of persistence.

3.2. Need for Layering
The robot needs to be responsive (reactive) to perform tasks in a dynamic environment. Including com-
plex tasks into the reactive module will slow it down. Therefore complex (computationally intensive)
tasks should be assigned to separate layers, i.e., moved to the upper layers. We believe that, to make
the design more efficient, the data used for performing these tasks should be chosen using the concept
of data persistence.

A deliberative system maintains a representation of the world. On receiving percepts, it reasons using
this representation of the world and produces actions that it believes are beneficial in achieving its
goal. Consider a system that believes the state of the world to be A. On receiving percepts, it uses A for
reasoning and concludes that execution of an operator X moves it closer to its goal. It assumes that A
does not change during the reasoning process. Once a suitable operator is determined, one of the fol-
lowing approaches can be used: The operator X can be executed directly, or the operator can be exe-
cuted contingent on testing whether the data that was used for selection of operator has changed. In
either case, deliberation is likely to fail when the environment is highly dynamic. If the selected opera-
tor is executed without checking the state of the world, then there is a high probability of executing
misappropriate actions. If a test is performed before executing the action and the condition fails to be
met, then the result of the deliberation is rendered useless.

Fig.4 (a) shows a scenario where deliberation is likely to fail. If it can be assured that the data is per-
sistent throughout the computation, then all the above issues disappear. What we need is the scenario
in fig. 4 (b) where deliberation is useful. We claim that by classifying data using data persistence as the
guiding factor and constructing layered reasoning systems based on this criterion, we can build an ar-
chitecture in which the selection and the execution of appropriate actions at each layer is possible.

In a dynamic world, some part of A (the representation of the world) keeps changing; as a result, the
theory of data persistence must be applied by dividing A into smaller chunks of data. These chunks of
data consist of data items that have degrees of data persistence within a small range. Data structures
from different chunks should have a substantial difference in their degree of persistence. This division
of data is an important factor during the design of the system. The approach adopted by us for our im-
plementation was to enumerate the possible data items and use a combination of our intuition and do-
main knowledge to group them into chunks. We are exploring theoretical methods that would allow a
more rigorous characterization of the data persistence within a given domain.
A•A0 UA1 U A2 U A3 U …….An-1 U An
Data items in Ai+1 are more persistent than data items in Ai
Data items in Ai+1 can be derived from data items in A0 ………. Ai-1, A i

t

 A A’
 persistent state

 length of computation

Figure 4 (b)

3.3. Number of Layers
The number of layers in AuRA and ATLANTIS is fixed. The number of layers was most likely deter-
mined after a thorough analysis of the specific problem being addressed. It is difficult to fit different
tasks into this fixed number of layers.

In LUDaP, a layer must be devoted to each Ai. Each layer should strictly handle data assigned to it,
i.e., Layeri operates using Ai only. An important thing to note is that each layer depends on one or
more of the bottom layers with respect to only data. A layer’s working is not dependent on the func-
tioning of the lower layers, i.e., the upper layers do not rely on which primitives are used or which ac-
tions are selected by the lower layers. This is a significant advantage and constraint: the final system
can be built as a parallel processing system consisting of multiple processors each handling a separate
layer. A single processor could implement such a system by using multiple threads with each thread
representing a layer. Our implementation uses the latter approach. Independence of individual layers
also makes LUDaP scalable: additional layers can be added as long as the data-sharing mechanism
doesn’t become a bottleneck.

3.4. Activations of Individual Layers
In ATLANTIS, all layers operate synchronously: the deliberative layer merely advises the sequencer to
follow specific commands. In AuRA, when a failure is detected, control is moved to an upper layer; the
lower layer waits until the problem is resolved. From the moment the failure is detected until the fail-
ure is resolved, the robot does little to achieve its goal. In this phase the robot is prone to the dangers
of a dynamic environment.

At any given time, the layers built using LUDaP could be in either of the two stages: checking for pre-
conditions for the execution of actions or directing the lowermost reactive layer to execute a specified
action. We combine these two terms and refer them as computing (to simplify explanation). In LUDaP,
depending on the implementation, the upper layers may or may not be computing all the time. In a
multi-processor environment all layers could be computing at the same time; and in a single processor
environment, layers are logically computing concurrently, but physically they compute only when they
are allotted a CPU time slot.

In LUDaP, the reasoning in the upper (deliberative) layers uses certain preconditions to control the
lowermost layer. Each layer has a different set of preconditions; the frequency with which the condi-
tions in each of the layers are satisfied reduces as one moves up the hierarchy. This can be explained as
follows: after a layer directs the reactive layer to execute an action it starts checking for the precondi-
tions again. For the next set of preconditions to be satisfied, the value of one or more data items in that
layer has to change. Since change is intimately related to degree of persistence, the frequency with
which the preconditions are satisfied is directly proportional to the degree of persistence. The reactive

layer, with its short percept-action cycle, forms the most critical component in a dynamic environment.
Therefore an effort should be made to supply this layer as much processing power as possible. The
LUDaP architecture gives the designer the flexibility to satisfy this constraint. By forcing upper layers
to operate on data with higher degree of persistence, we can justify the allocation of fewer CPU cycles
to the upper layers.

4. Current Implementations
Currently LUDaP is being built on the TeamBots© [Balch, 2000] robot simulator. This Java-based
simulator provides a library of primitives built on schema theory.

The herding scenario involves two types of robots: Pursuers and Evaders. Pursuers have radars
to detect walls and have visual sensors that detect evaders within a specified range. Evaders have ra-
dars to detect the presence of obstacles and pursuers. As soon as a pursuer is detected by the radar,
evaders move away from them. Herding involves searching for an evader robot and directing it towards
a specified area. The evader, meanwhile, tries to move away from the pursuer. Tracking the evader,
avoiding obstacles, and moving to a specific point involve dynamic data and therefore are handled by
the reactive layer (layer0).

 The pursuers switch between various primitive behaviors (like searching or directing an evader) us-
ing a finite-state-automaton model. A robot is always in one of the several states. It changes state based
on specific percepts. For example, a robot continues to stay in the search state until it encounters an
evader. As soon as it finds an evader in its range, it starts patrolling the evader to the patrol region.
The state switching can also be done by upper layers (this is how they control the reactive layer).

The pursuer is not capable of coordinating its activities with other pursuer robots, using the
reactive layer alone. For example, multiple pursuer agents could be following the same evader. We
built an additional layer (layer1) that checks for the presence of other pursuers in nearby vicinity. This
layer also checks the state of the nearby pursuers. The information required to perform these checks is
gathered from messages that are broadcasted by all pursuers. The message contains information about
the state, position of the robot, and the number of evaders in the range of the pursuer. Because commu-
nication is an expensive (time-consuming) operation, the content of the messages should possess a high
degree of persistence, where the required degree of persistence is directly proportional to the time re-
quired for transmitting the message. State information is more persistent than the position of the robot
and therefore assigned to a higher layer. The position information is used to reason about the presence
of the robot in an area, therefore is a form of persistent data.

The topmost layer (layer2) forms a map (grid) of all visited areas and directs an idle robot to

locations that have not been visited by any robot for some time. The map data structure is persistent by
virtue of the fact that rate of change of the map is very slow and therefore qualifies it as a data item
with high degree of persistence. Here the map data item is incorporated into layer2 rather than layer1.
Looking for vacant spaces in a map is also computationally more expensive than looking for other pur-
suers. By incorporating the map functionality into layer2, we keep layer1 responsive.

 Once all evaders have been detected, the number of evaders in the system will not change;
therefore, this type of data is highly persistent and can be used by the upper layers.

5. Experimental Results
Layer1 helps pursuer from crowding around a single evader and directs them to locations where they is
likely to find more evaders. Layer2 directs idle pursuers to places that have not been covered by any
pursuer for some time. Both these layers enable pursuers to discover evaders. Our experiments capture
the average number of evaders discovered with the following variations:
1. layer0 (only reactive)
2. layer0 + layer1 (with some reasoning)
3. layer0 + layer1+layer2 (all layers functioning)
The experiments were run five times.

 The average number of evaders detected

Cycle no. layer0 layer0+layer1 layer0+layer1+layer2

1 1.6 26 25
2 1.6 22.6 28.20
3 1 24 31
4 1.4 14.6 22.60
5 1.4 24.8 22.80

Avg. 1.4 22.4 25.92

Our results reinforce the belief that adding deliberativeness significantly increases performance. Al-
though adding another layer improves performance, it is not clear if this can be statistically justified.
We therefore conclude that deliberation is necessary to improve performance and a principled method-
ology for designing and integrating additional layers is highly desirable. LUDaP is a step in this direc-
tion.

6. Future Work
The current implementation consists of three layers and does not incorporate a truly delibera-

tive (planner like) layer. The existing implementation is therefore a partial hybrid architecture. The
mechanism to classify data into chunks is currently driven mostly by intuition and domain knowledge.
Development of a more principled and formal approach to address this issue is our most important
goal. The mechanism used for controlling the reactive layer by the upper layers• specifically resolution
of conflicts is another issue we are working on.

7. Conclusions
This paper proposes a new framework for building hybrid robot architectures. We introduce the con-
cept of data persistence which forms the guiding factor for designing hybrid control systems using this
framework. We borrow some ideas from existing hybrid architectures and introduce some new ideas.

References
[Arbib, 1992] Arbib, M. “Schema Theory”, in Encyclopedia of Artificial Intelligence, 2nd ed., (S.
Shapiro, ed.,) Wiley, 1992, pp. 1427-1443.

[Arkin and Balch, 1997] Ronald C. Arkin, Tucker Balch, “AuRA: Principles and Practice in Review”,
JETAI, volume 9, pp 175-189, 1997

[Arkin, 1995] Arkin, R.C., "Reactive Robotic Systems", Handbook of Brain Theory and Neural Net-
works, ed. M. Arbib, MIT Press, pp. 793-796, 1995.

[Brooks, 1996] Rodney A. Brooks, “A Robust Layered Control System for a Mobile Robot”, IEEE
Journal on Robotics and Automation, vol. RA-2, no. 1, March 1996.
[Brooks, 1991] R.A. Brooks. “Intelligence without Representation.” Artificial Intelligence, Vol.47,
1991, pp.139-159

[Gat, 1992] Erann Gat, “Integrating Planning and Reacting in a Hetrogenous Asynchronous Architec-
ture for Controlling Real-World Mobile Robots”, Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI), 1992.

[Balch, 2000] TeamBots© (www.teambots.org): Simulation and real robot execution environment.
Written in Java. Developed at CMU and Georgia Tech.

